Lost in Translation
Technological Views on Preserving CAD

Alex Ball

DCC/UKOLN, University of Bath

15 August 2014
Outline

Introduction

3D geometric representations

Advanced modelling techniques

Use cases

Possible solutions
Introduction
The main technological barrier to preserving CAD is variety

- of 3D geometric representations
- of advanced modelling techniques
- of use cases
3D geometric representations
Wire-frame modelling
Wire-frame modelling
Surface modelling

- Extruding
- Sweeping
- Lofting
- Revolving
- Triangular mesh
- NURBS
Constructive Solid Geometry
Boundary representation
Mistranslation and misinterpretation

Cracks after healing algorithm fails to reconstruct a valid boundary representation.

© Jianchang Qi, Vadim Shapiro
There are many incompatible ways of modelling 3D geometry.

There are many incompatible ways of interpreting 3D models.
Advanced modelling techniques
Construction history modelling

1. Insert cylinder \(l = 20 \) \(r = 1.0 \)

\[\text{Change cylinder } l = 40 \text{ } r = 0.5 \]

2. Insert sprocket \(r = 3.0 \)

3. Fit sprocket to cylinder

4. Group cylinder and sprocket

5. Scale group by \(1.75 \times \)

\[\ldots \]
Procedural modelling

© Yoav I. H. Parish & Pascal Müller

© Barbara M. Cutler
Parametric modelling
Feature-based modelling

- Ribs
- Cavities
Advanced modelling techniques

- CAD models contain much more than just geometry.
- The geometry might be useless without the extra information.
Use cases
Reusing standard parts

© Koray Pekerici

[Diagram of a top-level assembly and its subassemblies, showing parts and subassemblies labeled with letters a through j.]
Relationship with other documents

- Bill of Materials
- Archaeology Database
- Process Model
- Rationale Model
- Systems Models
- CAD Model
- ...
Integration with other systems

- CAD System
- CAM System
- Finite Element Analysis System
- Geographic Information System
- Animation System
- High Quality Renderer

...
Use cases

- You might need to coordinate CAD models with many other types of information.
- You might need to mimic whole systems.
Possible solutions
Standards: IGES

IGES
(ANSI Y14.26M-1981, …
ANS US/PRO/IPO-100-1996)

- 2D drawing
- Wire-frames
- Surface modelling
- Constructive solid geometry
- Boundary representation
Standards: IGES

IGES
(ANSI Y14.26M-1981, …
ANS US/PRO/IPO-100-1996)

2D drawing
Wire-frames
Surface modelling
Constructive solid geometry
Boundary representation

Wunder CAD

CAD-ulous
Standards: STEP

STEP
ISO 10303

LOTAR
(NAS 9300/EN 9300)
Standards for BIM, CAD style conventions

BIM

- ISO 16739:2013 Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries
- National BIM Standard – United States (NBIMS-US)
- AEC (UK) BIM Protocol
- (BSI) PAS 1192-2 Information management for the capital/delivery phase of construction projects

CAD style

- United States National CAD Standard
- AEC (UK) CAD Standards For Layer Naming
Recommendations

- Establish why a CAD model will be kept, then target the required properties for preservation.
- Create tests that can prove whether these properties have survived.
- Keep native CAD models for as long as they can be read.
- Normalise to STEP/IFC and a geometry-only standard (or two).
- Don’t forget supporting documentation, especially local conventions and ‘house style’.
- Campaign for better support for standard formats in CAD systems!
Preserving Computer-Aided Design (CAD)

Alex Ball

http://dx.doi.org/10.7207/twr13-02

DPC Technology Watch Report 13-02 April 2013
Thank you for your attention

DCC Website: http://www.dcc.ac.uk/

‘Preserving CAD’ report:
http://dx.doi.org/10.7207/twr13-02