EAD: The UK Experience

Bill Stockting, the British Library

EAD@10: A Symposium Celebrating the 10th Anniversary of Encoded Archival Description:

San Francisco, 31 August 2008
Introduction

UK archivists started using *beta* version of EAD in 1997 with great success!

A mixed picture though and EAD implementation and use has varied in different sectors of the UK archival community

- The National Archives (TNA) (then the Public Record Office (PRO))
- Local Government – the backbone of UK archival provision!
- Higher Education
- Services offering federated access to catalogues within these sectors
Background

Development of ICT and Internet in 1990’s:

- Archivists see potential of ICT tools for access to archives
- Government policy argues for increased access to archives as part of and electronic service delivery in public sector
- Funding available especially from National Lottery

NCA’s, *Archives On-line* (1998) sets goal:

>a researcher anywhere in the world who has access to the Internet should be able to contact a common gateway, submit a single enquiry and receive an integrated response, listing the relevant source material housed in all UK archive repositories
Standards for archival description still not universally accepted in the UK in 1980’s but MAD and ISAD(G) codify current practice for full hierarchical finding aids rather than MARC-AMC records.

Different to U.S. experience where EAD seen to influence descriptive practice as set out in DACS.
EAD Advantages

EAD had many advantages:

- Designed to work with ISAD(G)
- Based on open technical standards: Initially SGML but early compatibility with XML and related technologies
- Not tied to commercial software and freely available
- Commitment to development and maintenance by international EAD Working Group
Skills, Knowledge and Experience

Lack of technical, skills, knowledge and experience overcome by:

- Asking the experts
- Working with technical colleagues
- Developing networks and mutual support, nationally (EAD / Data Exchange Group) and internationally
- Training
Capturing and Standardising Legacy Metadata

EAD used in process of retro-conversion of legacy finding aids:

- TNA conversion of electronic legacy data using EAD to standardise to ISAD(G) for import to online catalogue

- A2A Programme - conversion of 100,000 finding aids to ISAD(G) using EAD template

- Some university archives use RLG negotiated APEX conversion service
Creating and Managing Standardised Metadata

Different strategies for different needs:

- Some university repositories create EAD files with SGML authoring software and templates
- TNA tests EAD with Core Executive pilot but develops hybrid system: SQL server with EAD/XML blobs
- Local authorities use proprietary integrated databases, especially CALM
- Federated services, Archives Hub and Janus, provide tools for creation of EAD by contributors
Presenting Metadata

Some present EAD files on the web but:

- HTML browsers can’t present SGML so use of plug-ins

- XML and XSL allow transformation of EAD/XML files

- *EAD Cookbook* style-sheets re-used

- Large files an issue:
 - Archives Hub limit to 5mb
 - A2A break up
 - So PROCAT does not use EAD for presentation
Searching Metadata

- Searching of EAD files initially provided by use of *Dynatext* and *Dynaweb* by PRO and some university archives.

- Since then different strategies:
 - A2A: TeXtML now *Autonomy* and XSL.
 - Archives Hub: *Cheshire* search engine, Z39.50 and XSL.
 - Distributed Archives Hub provides local search interface.
Exchanging Metadata

- EAD seen to have a role in data exchange:
 - Government adopts XML
 - NCA interoperability protocol mandates that systems must import and export EAD

- But problem for federated services that no single flavour of EAD the same so provision of tools such Janus’ *tidyer*
Some areas of debate:

- More complex data model describing record series (not fonds!), creators and functions/activities and their relationships

- User contributed data for ‘our’ collections and those of Community Archives

- Networking using more distributed model and exchange protocols such as Z39.59 and webs services