Hello, my name is Joseph T. Barcode and I would like to take you on a tour of the University of Georgia Russell Special Collections Libraries Building. It was constructed in 2011 and contains over 272,500 unique containers in its high density storage vault. I will demonstrate the unique collection and patron management solutions that were implemented in the building and planning of this state-of-the-art, high density facility and how these solutions can be scaled down to smaller institutions.

A - My story begins in 2008, when finding aids were presented in a wide variety of formats and styles. Staff and patrons alike were in need of consistent, searchable electronic finding aids and the following year conversion into standardized (EAD) finding aids began.

There are two different approaches to converting legacy description into EAD: Outsource - Some collections with more traditional finding aids were outsourced to a third party vendor to be marked up for EAD. Proc. Using a vendor to convert the finding aids into EAD did not require staff training and time. Cost was high and there was a large amount of cleanup and editing that had to be done after conversion.

XMetal, Excel, and Mail Merge - I25 finding aids were converted to EAD in house using a basic vist finding aid template and the New York University Excel/Mail Merge technique for encoding the inventories.

Scalable solution: For smaller repositories that still have legacy finding aids and nonstandard collection discovery tools, converting finding aid narratives into EAD using a simple and templated and Excel/Mail Merge for collection inventories is a very cost-effective way of creating standardized, searchable finding aids to be ingested into a collection management tool like Archivists' Toolkit or submitted at regional EAD databases.

B - The decision was made to implement Archivists' Toolkit (AT), so EAD finding aids were ingested into AT and collection-level MARC records were ingested for collections without finding aids.

Construction on a new special collections library began in 2010 and the inclusion of a high density vault required that every container have a unique identifier for tracking and circulation. It was up to me - Joseph T. Barcode - to ensure that every container, be it a box, artifact, or film can, had a barcode attached and visible.

Barcodes were affixed to containers but also needed to be added to the analog instances in AT. Adding barcodes to AT normally requires adding them one at a time and it is time consuming, so the Ute rapid entry barcode plugin for AT was added to the program. This plugin allows batch instance barcode assignment using a barcode scanner, so all files associated with the same box number can be barcoded at the same time. Also, the plugin’s rapid barcode entry feature allows container barcodes to be scanned in rapid succession.

Scalable solution: Smaller repositories should consider using collection management systems like AT (soon to be Archivists' Toolkit) to manage accessions and collections. While the barcoding feature is not relevant for most repositories, the location management tool in AT can assist smaller organizations for greater inventory control across numerous storage locations.

C - Once barcodes are added to the analog instance in AT, the finding aid is treated and exported to EAD. The barcode is present in the ‘physical’ tag and the finding aid is preserved in an XTF finding aids database for the whole world to see.

UGA Libraries programmers, Dave Fulke and Shawn Kiewet, authored a Java script creating a Request Dialogue Box. By finding the ‘contains’ tag, this script adds a check box next to box numbers in the finding aid that patrons can check to select material. When a box is selected, information is pulled from the EAD (such as title, collection number, box number, owning library, and barcode number) and sent to Aeon once patrons confirm their request.

For records in the Vellum instance of the OPAC, the barcode number is added to the Item Record along with the location information. The same Java script was adapted so that when specific locations associated with special collections are listed, a request button appears next to the item record. The same Request Dialogue Box that is used for finding aid requests is triggered when the request button is clicked and, after patron confirmation, information is imported into Aeon such as title, author, call number, and barcode number.

Scalable solution: The Java script can be customized to send information pulled from EAD anywhere, such as email - not just to Aeon - thus automating the material request process.

D - Aeon is a SQL database that tracks information about patrons and their requests. When patrons access UGA’s instance of Aeon, they are doing so to register as researchers (replacing the traditional paper form) and to place requests via the discovery tools described in C. Because of the Request Dialogue Box, information from catalog records and finding aids is parsed into Aeon fields, allowing staff to manage requests based on where material is located.

Each aisle and shelf has a specific coordinate in the high density vault and archival materials are stored by container size. These coordinates are maintained by a software system called AIMS, which was created by Generation Fifth Applications, and serves as an inventory system. When moving material into the new building, container barcodes were scanned into the AIMS system and connected to a specific aisle and shelf location.

Aeon developers created a tool for staff to FTP information pulled from a material request (patron name and barcode number) to vault staff, who then enter the barcode in AIMS to find where material is located. Once items are brought to the reading room or staff area, staff use Aeon to track the materials circulation and mark when it has been returned.

Scalable solution: While Aeon is a valuable library product, smaller institutions can track circulation via spreadsheets and have patrons register via electronic forms in a homogenous database.