BORN-DIGITAL DESIGN RECORDS

Edited by Samantha Winn
Table of Contents

INTRODUCTION
ABOUT BORN-DIGITAL DESIGN RECORDS • 1
Samantha Winn

MODULE 24
NAVIGATING THE TECHNICAL LANDSCAPE OF BORN-DIGITAL DESIGN RECORDS • 11
Kristine Fallon, Aliza Leventhal, and Zach Vowell

MODULE 25
EMERGING BEST PRACTICES IN THE ACCESSION, PRESERVATION, AND EMULATION OF BORN-DIGITAL DESIGN MATERIALS • 87
Jody Thompson, Euan Cochrane, Aliza Leventhal, Laura Schroffel, and Emily Vigor

MODULE 26
CASE STUDIES IN BORN-DIGITAL DESIGN RECORDS • 165
Aliza Leventhal, Stefana Breitwieser, Alexandra Jokinen, Mireille Nappert, and Zach Vowell
INTRODUCTION

About Born-Digital Design Records

SAMANTHA WINN

The Society of American Archivists’ (SAA) Architectural Records Roundtable (ARR), renamed Design Records Section (DRS) in 2017, first mobilized in 1985 to build on the momentum of the Cooperative Preservation of Architectural Records project (CoPAR). Aiming to foster camaraderie, provide a community of practice, and support scholarship among archival workers caring for design records, the DRS celebrated its twenty-fifth anniversary at the 2015 SAA Annual Meeting in Cleveland. Founding member Tawny Ryan Nelb recounted milestones in the section’s history and called for a new wave of scholarship to document the advancements in archival practice regarding records of the built environment.

This call resonated strongly with the Design Records Section leaders. In 2015, Aliza Leventhal began her first term as section co-chair. I joined her in 2016 as junior co-chair, and we began working on various publication proposals with the 2016–2017 steering committee. The following modules represent the culmination of one such initiative. Like many section members, I first encountered born-digital design records
in the field. In 2014, I began as a collections archivist for Virginia Tech's International Archives of Women in Architecture (IAWA). The management of born-digital design records from ingest to access was among the stickiest challenges of my tenure. It also guided the future of Virginia Tech University Library’s approach to digital assets management and data preservation. For every successful project and program, I remain indebted to the cutting-edge research of Design Records Section members, critical insights from the IAWA board and other industry leaders, and a bevy of interdisciplinary troubleshooters from within and beyond the university.

Written and informed by some of the leading voices in the management of born-digital design records, these modules represent the collaborative output of many current and former DRS steering committee members and taskforce leaders, industry partners, and pioneers in the application of computer-aided design. The modules deal with the unique technical landscape of born-digital design records; emerging best practices in the accession, preservation, and emulation of these materials; and functional case studies from a variety of academic, corporate, and museum-based archives. With historical overviews, use cases, practical tool registries, sample workflows, and robust glossaries of terms, these modules are designed to appeal to archival workers in a variety of institutional contexts, including business archives, architectural firms, museums, universities, and government offices. The modules provide archival workers of all experience levels with an accessible introduction to the management of digital design records.

The authors of these modules constitute a deep roster of theoretical and practical expertise across multiple industries and institution types. In Module 24, “Navigating the Technical Landscape of Born-Digital Design Records,” architect Kristine Fallon partners with Aliza Leventhal, former DRS leader and former corporate archivist with Sasaki Associates, and Zach Vowell, principle investigator for Software Preservation Network, to document technical concepts and dependencies for the successful management of born-digital design records. Laura Schroffel of the Getty Research Institute, Jody Thompson of Georgia Tech, Emily Vigor of the University of California Berkeley's Environmental Design Archives, Euan Cochrane of Yale University, and Aliza Leventhal capture the state of practice in Module 25, “Emerging Best Practices in the Accession, Preservation, and
Emulation of Born-Digital Design Records.” Finally, Aliza Leventhal and Zach Vowell partner with Stefana Breitwieser of the Icahn School of Medicine’s Arthur H. Aufses, Jr., MD Archives; Alex Jokinen of the Canadian Center for Architecture; and Mireille Nappert of HEC Montréal in Module 26, “Case Studies in Born-Digital Design Records,” to present a series of explanatory case studies which tie together recommendations of the prior two modules.

Milestones in the Management of Born-Digital Design Records

Meanwhile, design professions have operated in digital environments for decades, with early computer-aided design (CAD) explorations dating back to the early 1960s. By the turn of the twenty-first century, the vast majority of design records were born digital. In her 1998 review of computing in design, Kristine Fallon reported that “more than 85 percent of design firms” had licenses for Autodesk’s CAD systems by the mid-1990s, representing both the broad adoption of CAD technology in design and the dominance of Autodesk’s proprietary software. Similarly, in their 2015 thesis, “Preservation and Access of Born-Digital Architectural Design Records in an OAIS-Type Archive,” Tessa Walsh reported that building information modeling

(BIM) systems were employed by more than 70 percent of North American architects and contractors in 2012.²

Archival workers have discussed the management of born-digital design records for nearly as long as firms have produced them, anticipating the challenges such records would bring when the pioneering generations of CAD/BIM users retired.³ In 1994, the Canadian Centre for Architecture partnered with the Joint Committee on Canadian Architectural Records and Research (JCCARR) and SAA’s Architectural Records Roundtable to host a Working Conference on Establishing Principles for the Appraisal and Selection of Architectural Records.⁴ American Archivist dedicated its Spring 1996 special issue to architectural, engineering, and construction records, featuring significant coverage of the 1994 Working Conference and its sponsoring entities.

In his comprehensive history of the conference proceedings, Nicholas Olsberg, ARR chair from 1992 to 1994, warned that “only a fraction of the world’s archives have electronic records programs or expertise” and expressed concern that archivists were particularly unprepared to address the logistical and legal challenges of providing access to born-digital design records.⁵ Olsberg called on archivists to develop case studies “to evaluate the effect of electronic techniques on the nature, permanence, and accessibility of essential documentation of the design process.”⁶ In “Architectural Archives in the Digital Era,” architecture professor and scholar, William J. Mitchell reported on the

rapid adoption of digital records in architectural practice. Mitchell warned that “the combined problems of immense volume, unstable storage media, and obsolete software and hardware add up to some very tough problems for the archivist to deal with,” noting further challenges with conflicting intellectual property interests.

Despite these early insights, practitioners struggled to implement scalable solutions or standard practices. In a 2002 survey published in *Art Documentation*, Laura Tatum argued that American archivists were so focused on providing electronic access to digitized materials that they were simply “not yet dealing with the issue of digitally-born information.” Although Tatum lauded individual efforts by archival consultant Tawny Ryan Nelb, her analysis found that most advancements came out of architectural and archaeological practice. She cited the long-term contributions of William J. Mitchell and presentations by architects and architectural technologists at the 2000 *Architectural Records Conference by the Conservation Center for Art and Historic Artifacts*. John Burns, Bradley Hörst, and Tony Aeck spoke from their experiences in architectural firms and historical preservation offices. Recognizing that born-digital design records meet different needs throughout their lifecycle, Aeck called for a “strategic alliance” between design professionals and preservation fields.

Moving Toward Solutions

The first decade of the twenty-first century saw a renaissance of cross-disciplinary collaborations. In 2004, the Department of Architecture

12 Aeck, “Current and Emerging Documentation and Archiving Methods.”
of the Art Institute of Chicago published *Collecting, Archiving and Exhibiting Digital Design Data*, a landmark study conducted by Kristine Fallon Associates that established some of the first concrete and scalable recommendations for cultural heritage organizations.\(^{13}\) ISO 82045-5:2005, “Application of metadata for the construction and facility management sector,” was adopted in July 2005.\(^{14}\)

In 2007, several implementation teams met in Paris to showcase their progress toward preserving born-digital design records. Highlighted projects included the AIC’s Digital Archive for Architecture System (DAArch), which sought to implement the recommendations of the 2004 Art Institute/Fallon Associates study.\(^{15}\) Other projects which gained traction in this decade included the European Union’s SHAMAN project (Sustaining Heritage Access Through Multivalent Archiving) and MIT’s FAÇADE (Future-proofing Architectural Computer-Aided Design) project, funded in part by Institute of Museum and Library Services (IMLS) and conducted from 2006 to 2009.\(^{16}\) These were followed by FAÇADE2, a joint collaboration between MIT and Harvard, and DURAARK (Durable Architectural Knowledge) in Europe.\(^{17}\) Although these initiatives laid significant groundwork for future solutions by examining essential functions, building workflows, and testing technical requirements, no single system emerged as a transferrable, sustainable, and scalable platform for the preservation of born-digital design records.\(^{18}\)

In August 2012, SAA’s DRS established a dedicated taskforce—the Digital Design Records Taskforce, originally named the CAD/BIM Taskforce—to investigate the future of born-digital design records. Recognizing the progression of architectural practice and the growing adoption of digital design records as contractual documents, the taskforce aimed to identify research and advocacy needs, build relationships with experts in adjacent fields, and establish best practices

14 It was withdrawn in January 2016. 14:00-17:00, “ISO 82045-5.”

for preservation and emulation of born-digital design records.\(^1\) One of the group’s first initiatives was an ambitious bibliography of born-digital design record history.\(^2\) Subsequent projects included international surveys of digital design holdings in the United States, Canada, and United Kingdom; an updated bibliography of foundational, interdisciplinary resources; panel presentations at SAA Annual Meetings and Research Forums; and special publications through SAA, including these modules.

Expanding and Developing Resources

In recent years, many conversations and resources have evolved within individual institutions, like the Canadian Centre for Architecture (CCA), as well as through collaborations such as the ones facilitated by the Software Preservation Network (SPN) and Digital Design Records Taskforce (DDRTF). The CCA has demonstrated significant capacity for developing transferable tools and workflows,\(^3\) and has made many of its in-house digital preservation tools free and open-source.\(^4\) The SPN, which maintains significant ties with the DDRTF, has hosted research forums, exploratory grants, and communities of practice for the preservation and emulation of software in cultural heritage institutions.

Three additional forums have provided significant platforms for advancement and collaboration in recent years. “Designing the Future Landscape: Digital Architecture, Design and Engineering Assets,” a meeting that took place in November 2017, reflected the most significant gathering of design professionals and cultural heritage

\(^4\) The majority are available from https://github.com/CCA-Public.
professionals on the question of born-digital design records since the 2000 Architectural Records Conference by the Conservation Center for Art and Historic Artifacts.23 In April 2018, Harvard University hosted the IMLS-funded forum, Building for Tomorrow: Collaborative Development of Sustainable Infrastructure for Architectural and Design Documentation.24 In April 2020, the Digital Preservation Coalition hosted the United Kingdom-based virtual briefing day, Building a Digital Future: Challenges & Solutions for Preserving 3D Models, during which speakers from a range of backgrounds and experiences described preservation challenges and solutions developed in a variety of digital contexts.25

The first two of these historic gatherings provided fuel for the writing of these modules in 2018, which aim to capture the state of archival practice at the beginning of a new decade. The authors of these modules have outlined the norms of record production in design professions, explained fundamental technical challenges for the transfer and preservation of these records, and demonstrated adaptable workflows from a variety of institutional contexts. Other recent publications of note include

- reports from the multi-institution emulation research cohort, Fostering a Community of Practice (FCOP), hosted by SPN from 2018 to 2020, which covers a variety of topics, including the University of Virginia’s work with born-digital design records;26
- the article “An Archive of Interfaces: Exploring the Potential of Emulation for Software Research, Pedagogy, and Design” by Daniel Cardoso-Llach, Eric Kaltman, Emek Erdolu, and Zachary Furste, who facilitated a cross-discipline exploratory course leveraging EaaSI as a potential pedagogical tool for

26 Fostering a Community of Practice, https://www.softwarepreservationnetwork.org/fcop.
teaching architecture, architectural history, and technology history;\(^{27}\)

- the Fall/Winter 2021 issue of American Archivist (volume 84, issue 2), which features a special section on architecture and design records, including born-digital design records;\(^{28}\)
- the 2021 Digital Preservation Coalition Technology Watch Report Preserving Born-Digital Design and Construction Records by Aliza Leventhal and Jody Thompson, which provides archival professionals, active designers, and facilities managers with context to consider preservation approaches that account for both the technical and cultural components of the broad range of complex digital objects created throughout the course of designing, implementing, and maintaining a built space.\(^{29}\)

Significant opportunity remains for future research, however. The community still needs viable preservation frameworks that can be implemented at scale, particularly for records and data produced in cloud-based environments. We also need a better understanding of how researchers will use these materials in the future. It is our hope that this publication will mark progress toward standardization and best practices that can be implemented by a broad spectrum of archival workers.

MODULE 24

NAVIGATING
THE TECHNICAL LANDSCAPE OF
BORN-DIGITAL DESIGN RECORDS

Kristine Fallon, Aliza Leventhal, and Zach Vowell
Module 24 Contents

Introduction • 15

Digital Design Record Creators and Custodians • 15
 Design Firms • 16
 Facility Management Groups • 17
 Records Management Groups • 18
 Archives and Museum Collections • 19

Design Phases, Workflows, and Products • 19
 Design Phases • 20
 Design Outputs • 21
 Pre-Contract Work • 21
 Pre-Design • 23
 Schematic Design • 23
 Design Development • 24
 Construction Documents • 25
 Procurement • 26
 Construction • 26

Digital Workflows and Archival Assumptions • 28

Case Studies • 29
 Ross Barney Architects • 30
 Valerio Dewalt Train Associates, Inc. • 34

The Nature of Computer Graphic Design Data • 38

Common File Types and Software • 44

Information Forms and Formats • 49
 Unstructured Form • 49
 Structured Form • 50
 Proprietary Format • 50
 Standard Format • 50
Baseline Competencies for Archivists • 51
 Design Data Production Standards • 51
 Format Standards • 55
 Data Type: Drawings, Documents, and Presentations (Without Audio or Video) • 56
 Data Type: Raster Graphics • 57
 Data Type: Vector Graphics • 58
 Data Type: Born-Digital Video • 59
 Data Type: Geospatial • 61
 Data Type: Building Information Modeling (BIM) • 61

Basic Considerations for Archivists • 63
 Common Challenges in Establishing File Integrity • 63
 Navigating Software Dependencies • 68
 Cloud-Based Applications • 70
 Free Readers • 71

Recommendations • 72
 Archival Approaches • 72
 Recommendations for the Design Office • 75

Conclusion • 77

Appendix Glossary of Terminology • 78

Bibliography • 83
MODULE 25
EMERGING BEST PRACTICES IN THE ACCESSION, PRESERVATION, AND EMULATION OF BORN-DIGITAL DESIGN MATERIALS

JODY THOMPSON, EUAN COCHRANE, ALIZA LEVENTHAL, LAURA SCHROFFEL, AND EMILY VIGOR
Module 25 Contents

Introduction • 91

Ingest • 93
 Assessing Organization Capacity • 93
 Discussion with Donors • 99
 Deed of Gift • 103
 Dependencies • 106
 Software and Hardware Obsolescence • 106
 Software Licenses • 107
 Versioning/Patches • 107
 Understanding the Technological Ecosystem • 108
 Cloud-Based Platforms • 109

Preservation Fundamentals • 109
 Digital Preservation Frameworks • 109
 Content Preservation Approaches • 117
 Migration • 117
 Migration via Emulation Environments • 118
 Recompiling • 119
 Maintaining a Hardware Museum • 120

Emulation and Virtualization • 121
 Emulation • 121
 Virtualization • 124
 Traditional Use Cases for Virtualization • 124
 Virtualization with VirtualBox, VMWare, or KVM • 125

Digital Forensics Processing • 126

Emulation for Access • 128
 Applications of Emulation and Virtualization for the Preservation of
 and Access to Born-Digital Design Records • 128
 Local Emulation • 130
 Emulation-as-a-Service • 131
 Acquiring Legacy Software • 133
 Complex Records and Dependencies • 133
Emerging Best Practices in the Accession, Preservation, and Emulation of Born-Digital Design Materials

Potential for Emulation and Virtualization • 135
 Pausing and Citing Views on Designs/Models • 137
 Emulating Networked Environments • 138
 Migration by Emulation • 138

Conclusion • 139

Appendix A: Digital Material Donor Survey • 141

Appendix B: Sample Deed of Gift • 145
 Exhibit A: Description of Collection Materials • 153
 Exhibit B: Transfer of Collection Method • 154
 Exhibit C: Donor Permission • 156
 Exhibit D: Collection Materials That May Contain Sensitive Information and Require Access Restriction • 157
 Exhibit E: Credentials and Permissions • 158

Bibliography • 159
MODULE 26

CASE STUDIES IN BORN-DIGITAL DESIGN RECORDS

Aliza Leventhal, Stefana Breitwieser, Alexandra Jokinen, Mireille Nappert, and Zach Vowell
Module 26 Contents

Introduction • 169

Design, Digital, and Born-Digital Design Records • 169
 Design Records: Niche and Ubiquitous • 169
 Born-Digital Records Specialization • 170
 Born-Digital Design Records: Merging Specialties • 171

Appraisal/Acquisition • 172
 Acquisition Strategies and Policies • 172
 Appraising Without Certainty • 174
 A Cal Poly Use Example • 175
 Using the Deed of Gift to Address Uncertainty • 178
 Minimizing Uncertainty • 179
 Initial Transfer from Donor to Organization • 179
 Accession Descriptions • 183

Arrangement and Description • 185
 Factors That Impact Arrangement • 185
 Transferring Records • 185
 State of Organization on Transfer • 186
 Scope of the Collection • 188
 Describing Born-Digital Material • 188
 Automation • 191
 Infrastructure Supporting Description • 191

Preservation and Storage • 195
 Preparing Files for a Digital Preservation System (OAIS) • 195
 SIP Structure and Additional Content • 196
 Transfer and Ingest into a Digital Preservation System • 198
 Understanding Characterization and File Format Identification • 201
 Further Processing with a Digital Preservation System • 204
 Digital Preservation Storage at the CCA • 205
 Digital Preservation Storage at the Cal Poly • 205
Access • 206

Challenges to Access • 206

Policy-Related Challenges to Access • 206

Technology-Related Challenges to Access • 207

Defining Users of Born-Digital Design Records • 208

Access in the Reading Room: Software Dependence and Emulation • 210

Need for Custom Development • 215

Conclusion • 218

Appendix A: CCA Format Policy Registry 2019 • 221

Appendix B: CCA Submission of Digital Files Questionnaire • 228

Bibliography • 234